
Features

- Peak equivalent, true RMS or true peak output
- Corrosion resistant
- Hermetic seal
- ESD protection
- Overload protection
- Reverse wiring protection

Benefits

- Choice of output: RMS, true peak, or peak, permits you to choose the sensor that best fits your industrial requirements
- Provides continuous trending of overall machine vibration
- True peak is useful for detecting loose parts like valves on reciprocating machinery
- Can help guide maintenance
- Helps notify of impending equipment failure

The 4-20 mA output of the PC420A Series is proportional to acceleration vibration. An output of 4 mA indicates a level of 0 g or no vibration present. A full-scale reading of 20 mA indicates that the maximum range [peak or RMS] of vibration is present.

Model PC420A Series - standard Acceleration loop powered sensors (LPS™)

Output, 4-20 mA	
Full scale, 20 mA (±5%)	see table 1 on back
Frequency response:	
±10%	10 Hz - 1.0 kHz
±3 dB	4 Hz - 2 kHz
Repeatability	±2%
Transverse sensitivity, max.	5%

Electrical

Power requirements (two wire loop power):	
Voltage at PC420 Series sensor terminals	10 VDC min, 30 VDC max
Loop resistance ¹ at 24 VDC, maximum	700Ω
Turn on time, 4-20 mA loop	
Grounding	case isolated, internally
· ·	shielded

Environmental

Temperature range–40 to 85°	Ü
Vibration limit	k
Shock limit2,500 g pe	
Sealinghermetic	

Physical

Sensing element design	P7T ceramic / shear
Weight	
Case material	
Mounting	1/4 - 28 tapped hole
Output connector	2 pin, MIL-C-5015 style
Mating connector	
Recommended cabling	J9T2A

Shell ground A loop positive (+) B loop negative (-)	Connector pin Shell A B	loop positive (+)
--	----------------------------------	-------------------

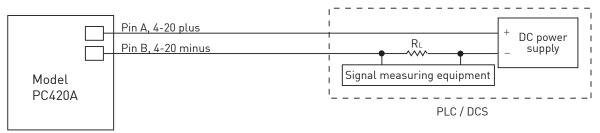
 $Accessories \, supplied: \, SF6 \, mounting \, stud \, (International \, customers \, specify \, mounting \, requirements); \, calibration \, data \, (level \, 2).$

Table 1: PC420Ax-yy model number selection

x (4-20 mA output type)	yy (4-20 mA full scale)
R = RMS output, acceleration	05 = 5 g
P = Equivalent peak output, acceleration	10 = 10 g
TP = True peak output, acceleration	20 = 20 g

Notes:

 $^{\rm 1}$ Maximum loop resistance (R $_{\rm L}$) can be calculated by:


$$R_{L} \text{ (max resistance)} = \frac{V_{DC power} - 10 \text{ V}}{20 \text{ mA}}$$

DC Supply Voltage	R _L (max resistance) ²	R _L (minimum wattage capability)³
12 VDC	100Ω	1/8 Watt
20 VDC 24 VDC	500Ω 7000	1/4 Watt 1/2 Watt
26 VDC	800Ω	1/2 Watt
30 VDC	1.0kΩ	1/2 Watt

 $^{2}\,$ Lower resistance is allowed, greater than 10Ω recommended.

 3 Minimum R, wattage determined by: (0.0004 x R,).

Typical circuit

Wilcoxon Research Inc 20511 Seneca Meadows Parkway Germantown, MD 20876

Tel: 301 330 8811 Fax: 301 330 8873 Email: sensors@wilcoxon.com

www.meggitt.com

