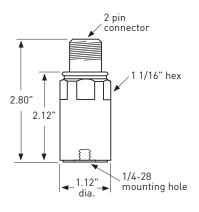


shielded




#### **Features**

- True RMS or true peak output
- Corrosion resistant
- Hermetic seal
- ESD protection
- Overload protection
- Reverse wiring protection

#### **Benefits**

- Much-narrower bandwidth with higher-order filtering limits fundamental frequencies
- Designed to examine frequncies related to pump cavitation
- Provides continuous trending of overall machine vibration
- Can help guide maintenance
- Helps notify of impending equipment failure

The 4-20 mA output of the frequency-banded accelerometer is proportional to acceleration vibration. An output of 4 mA indicates a level of 0g or no vibration present. A full-scale reading of 20 mA indicates that the maximum range of vibration is present. This sensor filters-out low frequency components, such as motor running speed, in favor of higher frequency information related to pump cavitation. Higher order filtering sharpens sensor bandwith for tight performance.



# Model PC420A-B3223 Frequency-banded acceleration loop powered sensors (LPS™)

| Output, 4-20 mA              |                  |
|------------------------------|------------------|
| Full scale, 20 mA (±5%)      | see table 1      |
| Frequency response:          |                  |
| ±10%                         | 400 Hz - 1.4 kHz |
| ±3 dB                        | 300 Hz - 2 kHz   |
| Repeatability                | ±2%              |
| Transverse sensitivity, max. | 5%               |
|                              |                  |

#### **Electrical**

| Power requirements (two wire loop power):       |                           |
|-------------------------------------------------|---------------------------|
| Voltage at PC420 Series sensor terminals        | 10 VDC min, 30 VDC max    |
| Loop resistance <sup>1</sup> at 24 VDC, maximum | 700Ω                      |
| Turn on time, 4-20 mA loop                      | < 30 seconds              |
| Grounding                                       | case isolated, internally |

#### Environmental

| Temperature range | 40 to 85°C   |
|-------------------|--------------|
| Vibration limit   | 250 g peak   |
| Shock limit       | 2,500 g peak |
| Sealing           | hermetic     |

## **Physical**

| Sensing element design | PZT ceramic / shear     |
|------------------------|-------------------------|
| Weight                 | 162 grams               |
| Case material          |                         |
| Mounting               | 1/4 - 28 tapped hole    |
| Output connector       | 2 pin, MIL-C-5015 style |
| Mating connector       |                         |
| Recommended cabling    |                         |

|  | Connector pin<br>Shell<br>A<br>B | Function<br>ground<br>loop positive (+)<br>loop negative (–) |  |
|--|----------------------------------|--------------------------------------------------------------|--|
|--|----------------------------------|--------------------------------------------------------------|--|

Notes:  $^{1}$ . Maximum loop resistance ( $R_L$ ) can be calculated using formula on back. Accessories supplied: SF6 mounting stud (International customers specify mounting requirements); calibration data (level 2).

See back for table 1 and powering diagram.

Wilcoxon Research Inc 20511 Seneca Meadows Parkway Germantown, MD 20876

Tel: 301 330 8811 Fax: 301 330 8873 Email: sensors@wilcoxon.com

www.meggitt.com

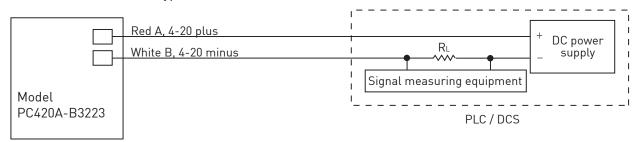




Table 1: PC420Axx-yy-B3223

| xx (4-20 mA output type)               | yy (4-20mA full scale) |
|----------------------------------------|------------------------|
| R = RMS output, acceleration           | 05 = 5 g               |
| P= equivalent peak ouput, acceleration | 10 = 10 g              |
| TP= true peak output, acceleration     | 20 = 20 g              |
|                                        |                        |

## Notes:


<sup>1</sup> Maximum loop resistance calculation:

$$R_{L} \text{ (max resistance)} = \frac{V_{DC power} - 10 \text{ V}}{20 \text{ mA}}$$

| DC supply | R,                            | R, (minimum          |
|-----------|-------------------------------|----------------------|
| voltage   | (max resistance) <sup>2</sup> | wattage capability)³ |
| 12 VDC    | 100Ω                          | 1/8 Watt             |
| 20 VDC    | 500Ω                          | 1/4 Watt             |
| 24 VDC    | 700Ω                          | 1/2 Watt             |
| 26 VDC    | 800Ω                          | 1/2 Watt             |
| 30 VDC    | 1.0kΩ                         | 1/2 Watt             |

 $<sup>^2</sup>$  Lower resistance is allowed, greater than 10 $\Omega$  recommended.  $^3$  Minimum  $\rm R_L$  wattage determined by: [0.0004 x  $\rm R_L$ ].

## Typical circuit

