

Features

- Peak velocity output
- Corrosion resistant
- Hermetic seal
- ESD protection
- Overload protection
- Reverse wiring protection

Benefits

- Provides velocity vibration trending
- Provides continuous trending of
- overall machine vibrationCan help guide maintenance
- Helps notify of impending
- equipment failure
- Much-narrower bandwith response makes 4-20mA output dependent on key fundamental frequencies

The PC420VP-10-B3041 4-20 mA loop powered transducers offer users the ability to monitor vibration at their running speed while ignoring many higher frequency effects. In equipment such as gearboxes there can be highamplitude vibration at frequencies far above the running speed. This sensor will filter out the higher frequencies and allow users to trend only the lowfrequency components such as running speed for machines operating in the 300 RPM to 1500 RPM range.

Model PC420VP-10-B3041 Frequency-banded velocity loop powered sensors (LPS™)

Output, 4-20 mA

Full scale, 20 mA (±5%)	1.0 inches/second
±10% frequency response	
	3Hz - 40kHz
	±2%
Transverse sensitivity, max	5%
-	

Electrical

Power requirements (two wire loop power):	
Voltage at PC420 Series sensor terminals	
Loop resistance ¹ at 24 VDC, maximum	700Ω
Turn on time, 4-20 mA loop	45 seconds
Grounding	case isolated, internally
•	shielded

Environmental

Temperature range	40 to 85°C
Vibration limit	250 g peak
Shock limit	2,500 g peak
Sealing	

Physical

Thysicat	
Sensing element design	PZT ceramic / shear
Weight	
Case material	
Mounting	
Output connector	
Mating connector	
Recommended cabling	

B loop negative (-)

 $\label{eq:scalar} Accessories supplied: SF6 mounting stud (International customers specify mounting requirements); calibration data (level 2)$

See back for notes and powering diagram.

Wilcoxon Research Inc 20511 Seneca Meadows Parkway Germantown, MD 20876 USA

Tel: 301 330 8811 Fax: 301 330 8873 Email: sensors@wilcoxon.com

www.meggitt.com

Wilcoxon Research

(6

Notes: $\ ^1$ Maximum loop resistance (R_) can be calculated by:

V _{DC power} - 10 V 20 mA R₁ (max resistance) =

DC supply voltage	R _L (max resistance)²	R _L (minimum wattage capability)³
12 VDC	100Ω	1/8 watt
20 VDC	500Ω	1/4 watt
24 VDC	700Ω	1/2 watt
26 VDC	800Ω	1/2 watt
30 VDC	1.0kΩ	1/2 watt

 $^2\,$ Lower resistance is allowed, greater than 100 recommended. $^3\,$ Minimum R_ wattage determined by: (0.0004 x R_).

